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Navier-Stokes calculations were performed to simulate the evolution of a moderate- 
amplitude localized disturbance in a laminar flat-plate boundary layer. It was found 
that, in accordance with previous results for linear and weakly nonlinear 
disturbances, the evolving disturbance consists of two parts : an advective, or 
transient portion which travels a t  approximately the local mean velocity, and a 
dispersive wave portion which grows or decays according to Tollmien-Schlichting 
instability theory. The advective portion grows much more rapidly than the wave 
portion, initially linearly in time and, in contrast to the weak-disturbance case, gives 
rise to two distinct nonlinear effects. The first is a streamwise growth of the disturbed 
region producing a low-speed streak, bounded in the vertical and spanwise directions 
by intense shear layers. The second nonlinear effect is the onset of a secondary 
instability on the vei tical shear layer formed as a result of spanwise stretching of the 
mean vorticity and giving rise to oscillations in the v- and w-components with a 
substantially smaller spatial scale than that of the initial disturbance. The effect of 
initial spanwise scale is assessed by calculating the disturbance for three different 
cases in which the spanwise scale and the initial disturbance amplitude were varied. 
It was found that the resulting perturbation depends primarily on the initial 
distribution of v in each plane z = const., but is approximately independent of the 
spanwise scale. 

1. Introduction 
Transition to turbulence has been intensely studied over the past few decades and 

much progress has been made in the understanding of linear and nonlinear processes 
in the instability and breakdown of wall-bounded shear flows. While the majority of 
research has focused on the evolution of initially two-dimensional infinite wave 
trains, there has recently been some interest in the evolution of localized disturbances 
in a laminar flow. Case (1960) showed that a two-dimensional inviscid disturbance 
may be characterized as being composed of two parts: a ‘wave’ part and a 
‘transient ’ or ‘ advective ’ part. The wave portion is the part of the disturbance that 
is usually considered in stability theory and is composed of the dispersive waves 
travelling with a characteristic velocity and growth rate which are found as 
eigenvalues of the Rayleigh equation. In contrast, the transient part of the 
disturbance travels at the local mean velocity of the fluid and, as Gustavsson (1978) 
showed, decays as l/t for a two-dimensional flow. 

t Present address : Center for Fluid Mechanics, Turbulence and Computation, Box 1966, Brown 
University, Providence, RI 02912, USA. 
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For a three-dimensional flow, the transient portion has a very different character. 
This was recognized by Landahl (1975), who noted that for an initial disturbance 
with a spanwise structure, the transient part of the solution contains a non-vanishing 
component, which he termed the ‘liftup’ effect, in which the integrated effect of the 
vertical perturbations creates large-amplitude, non-vanishing, perturbations in the 
horizontal velocities through the generation of vertical vorticity, and the tilting and 
stretching of vortex lines. The role of vortex tilting and stretching has long been 
recognized in connection with three-dimensional secondary instabilities of 
Tollmien-Schlichting waves (see, for example, Kovasznay, Komoda & Vasudeva 
1962; Stuart 1965; Wray & Hussaini 1984; Orszag & Patera 1983), and the 
application of these ideas to localized disturbances has been reported by Gustavsson 
(1978), Henningson (1988) and by Breuer & Haritonidis (1990) in Part 1 of this work 
(hereinafter referred to as Part 1).  These studies have shown that, for an inviscid 
flow, the transient part of the three-dimensional disturbance grows owing to the 
generation of vertical vorticity by the liftup effect, forming an inclined shear layer 
which is tilted and stretched by the mean shear as i t  travels downstream. This 
growth occurs even though all of the free wave modes of the inviscid disturbance are 
damped. Landahl (1980) has also shown that for a linear inviscid flow, a three- 
dimensional initial disturbance is subject to an algebraic instability by which the 
disturbance energy grows a t  least as fast as linearly with time owing to the 
elongation of the disturbance’s structure. 

The inclusion of small viscosity does not significantly change the short-time 
evolution of the disturbance. Experimental results presented in Part 1 show that for 
a low-amplitude initial perturbation, the disturbance initially behaves as the inviscid 
theory predicts, forming a shear layer which is tilted and stretched by the action of 
the mean shear as it advects downstream. However, a t  the Reynolds number and 
amplitude that were considered in Part 1, the transient part of the disturbance 
eventually decayed (as viscous linear theory dictates), leaving only the dispersive 
portion of the disturbance in the form of a linearly unstable wave packet which grew 
slowly as it travelled downstream, in accordance with the linear stability theory. A 
weak nonlinearity was also observed by comparing disturbances of opposite phase, 
but this nonlinearity also decayed and did not affect the resultant wave packet. The 
growth and evolution of such wave packets has been studied in detail by Gaster 
(1975), and Gaster & Grant (1975). These disturbances were therefore defined as 
being ‘weak’ because the transient and the effects of the generation of vertical 
vorticity by the three-dimensional initial conditions ultimately decayed owing 
to viscous forces, and the long-time structure of the disturbance was the 
Orr-Sommerfeld wave packet. (This behaviour is not restricted to  linear dis- 
turbances, since weak nonlinearities were observed in Part 1 which did not effect the 
overall decay of the transient or the growth of the wave packet.) 

At higher amplitudes and/or Reynolds numbers, we might expect the dis- 
turbance’s evolution to be quite different, and it is this regime that we explore in this 
paper. The linear studies indicate that the disturbance velocities can become quite 
large (much larger than the initial disturbance) and if the initial amplitude is 
sufficiently high, or if viscosity is sufficiently weak, the disturbance will achieve an 
amplitude at  which strong nonlinear effects are important, before the transient 
decays owing to viscous effects. The initial growth of the disturbance may 
nevertheless be dominated by the linear mechanism of vertical vorticity generation. 
However, instead of the transient decay and slow wavepacket growth that 
characterizes the long-time evolution of the weak disturbances, we shall show that 
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these ‘strong’ disturbances become dominated by the effects of the nonlinear growth 
and subsequent breakdown of the transient part of the disturbance. 

There are two ways in which one might observe nonlinear effects. The first is the 
nonlinear growth of the primary disturbance which may end either in some nonlinear 
equilibrium state or in the breakdown of the laminar flow into a turbulent spot. This 
kind of nonlinear growth provides a ‘platform’ for the second nonlinear effect, 
namely the growth of secondary instabilities. If the primary disturbance becomes 
strong enough and is sufficiently long-lasting, then it will result in a locally distorted 
mean profile. This distorted mean profile may be unstable to small scales, allowing 
high-frequency oscillations to grow, therefore contributing to the local breakdown of 
the laminar flow. In  the results discussed in Part 1 and in those of Henningson (1988), 
the particular initial conditions considered gave rise to an internal shear layer which 
was quite persistent as the disturbance travelled downstream. At the higher 
amplitudes considered in this study, we shall show that, for similar initial conditions, 
the inclined shear layer that  forms does indeed grow nonlinearly, and that the 
nonlinear distortion of the Blasius profile supports small-scale secondary oscillations. 

We have chosen to study the evolution of these ‘strong’ disturbances through 
direct numerical simulation. This approach has the advantage of giving the velocity 
field a t  every point in the domain, which enables us to examine in detail the structure 
of the disturbed flow, the two-dimensional spatial power spectra of the velocity 
components and the form of the observed nonlinear interactions. Experimental 
measurements of the nonlinear evolution of an isolated disturbance have also been 
completed (Breuer 1988), but they do not add significantly to the results presented 
here. 

The majority of the results concern the evolution of ‘positive’ disturbances. The 
term ‘positive’ simply means that the form of the initial disturbance is such that it 
forms an internal shear layer. In $4 the evolution of ‘negative’ disturbances (i.e. 
disturbances of equal strength and structure but of opposite sign) is compared with 
the results for the positive disturbances. Finally, in $ 5 ,  the effect of initial spanwise 
scale is discussed and the results from two additional simulations are used to assess 
the effect of changing the initial spanwise scale on the evolution of the disturbance 
and how the nonlinear mechanisms scale with the dimension of the initial 
disturbance. 

2. Numerical scheme 
The initial-value problem was solved numerically using a NavierStokes boundary- 

layer code developed by Spalart (1986). The boundary-layer code is designed to solve 
the three-dimensional, incompressible time-dependent NavierStokes equations for 
the flow over a flat plate. The boundary conditions in the horizontal plane are 
periodic, and a Fourier decomposition is used in the x- and z-planes. (Here x defines 
the downstream direction, y the direction normal to the wall and z the spanwise 
direction.) In the wall-normal direction, the semi-infinite half-plane, y = 0 to 00, is 
mapped onto a finite domain and a decomposition using Jacobi polynomials is used 
in this direction. The flow is required to be zero a t  the wall and equal to U ,  in the 
free stream. This representation of the vertical direction has been shown by Spalart 
(1986) to be very efficient and accurate with remarkably few modes. The periodic 
boundary condition in the x-direction requires that the mean flow be approximated 
as being parallel (this also implies that the simulation is a temporal rather than 
spatial one). However, in order to provide some correction for this, the computational 
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box is actually moving at a constant speed equal to the average propagation speed 
of the disturbance and the boundary layer does grow as the disturbance travels 
downstream. Thus, although the boundary-layer height is constant from the left side 
of the computational domain to the right side, it does increase as time advances. For 
the present results, the effect of this correction is minor since the disturbance is only 
followed for about 508*, over which distance there is minimal boundary-layer 
growth. The code has been used successfully to simulate transition induced by a 
vibrating ribbon (Spalart & Yang 1987) as well as a turbulent spot (Henningson, 
Spalart & Kim 1987). 

For the results presented here, the calculations were initiated at  a Reynolds 
number based on displacement thickness, Re,, = 950 (this will increase as the 
disturbance travels downstream). This corresponded to the Reynolds number used in 
the experimental results presented in Part 1. The computations used a 128 x 35 x 128 
grid (in the x-, y- and x-directions respectively), and the computational box was 
1008* x 50S* in the x- and z-directions respectively. This resolution was found to be 
more than sufficient to resolve the relevant scales (Spalart 1988 used a 128 x 50 x 96 
grid for a fully turbulent flow at Re, = 500). Each time-step took about 15 s of CPU 
time running on a Cray X-MP-48, and about 50 time-steps were needed to advance 
the solution 100 non-dimensional time units, turn/&*. To conserve computational 
time, only disturbances symmetric about z = 0 were considered. This restriction 
reduces the computational time required to compute the flow field although it does 
inhibit certain ' sinuous ' instability modes. The possible consequences of this 
symmetry constraint are discussed in $3.3. 

2.1. Initial conditions 
The initial disturbance used consisted of two pairs of counter-rotating eddies defined 
by the stream function: w iw 

u = 0 ;  v = -z; w = ay ,  
(2) 

i = xp,; 8 = yp,; z = z&. (3) 

* -E2-va+2 where Y = A m y  e 

and F, 8, z are the normal Cartesian coordinates scaled by I,, 1, and I ,  : 

For the present results the scaling lengths used were: 1, = 58*, I ,  = 1.28*, and 1, = 
68* ; chosen so as to be consistent with the results for the weak disturbances described 
in Part 1. For a more detailed discussion concerning the choice of initial disturbance, 
the reader is referred to Part 1, although the effect of changes in I ,  is discussed in $5. 

The disturbance was placed at z = 0,z = 0 at time t = 0 and the flow field was 
integrated forward in time. The value for the amplitude factor used in the initial 
conditions was A = 0.2. This value corresponded to an initial peak-to-peak v 
perturbation of 0.5 Yo of U,. 

3. Results for positive disturbances 
3.1. Streamwise velocity 

The series of plots shown in figure 1 show representative frames of the streamwise 
perturbation velocity field in the (5, y)-plane at  z = 0. The picture in the first frame 
shows the development of an inclined shear layer structure and is very similar in 
character to the results seen for the initial behaviour of the low-amplitude 
disturbance discussed in Part 1. This behaviour can be explained by the linear, three- 
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FIQURE 1. Contours of streamwise perturbation velocity in the (z, y)-plane at the centreline, 
z = 0. Contour spacing: 0.02Um. In this and subsequent similar figures solid lines represent positive 
contours, dotted lines represent negative contours. 

dimensional liftup mechanism. The motion of the initial eddies creates two adjoining 
regions of fluid, a low-speed region, caused by the pushing up of low-speed fluid from 
close to the wall, and a high-speed region further upstream caused by the pulling 
down of high-speed fluid. The action of the mean shear tilts the structure over and 
stretches it, forming an internal shear layer. The shear layer structure is typical of 
the transient part of the disturbance since it travels at the local mean velocity and 
is not wave-like in character. Despite the fact that there was initially no streamwise 
perturbation, the levels of u are quite high, even after a short time : the peak-to-peak 
perturbation a t  tU/8* = 43 is of the order of 5 YO of U ,  and as the disturbance travels 
downstream, the amplitude of u grows a t  a slow rate until i t  begins to rise sharply 
a t  tU/8* = 117. This is in agreement with Gustavsson (1978) and the linear results 
of Part 1 which indicate that a small vertical velocity can produce very large-scale 
horizontal velocities through the three-dimensional transient growth. At later times, 
there are some new features that were not seen in the low-amplitude results. At 
tU/S* = 117, a ‘necking’ of the structure has appeared at x/6* = 55. This necking 
was observed to intensify at later times. As we shall see, this is due to a secondary 
instability which is growing on the ‘ back ’ of the shear layer and causing the structure 
to break down. As the disturbance progresses, it is the downstream side which 
intensifies while the upstream side, consisting of locally accelerated fluid, remains a t  
an essentially constant amplitude, and even decays at later times. This is also 
consistent with the results from the linear inviscid calculations in Part 1. 

The spanwise structure of the disturbance is shown in figure 2. Initially the 
disturbance structure reflects the vertical movement of fluid particles by the initial 
conditions: The low-speed regions are formed by the upward motion of the initial 
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FIQURE 2. Contours of streamwise perturbation velocity in the (r, %)-plane at  y/S* = 1.05. 
Contour spacing: O.02Um. 

eddies while the high-speed regions result from the pulling down of high-momentum 
fluid by the downward motion of the initial eddies. This is also typical of the 
transient portion of a localized disturbance and several similarities with the low- 
amplitude results can be seen. As time increases, the wave part of the disturbance 
becomes visible as a surrounding wave packet develops a t  the edges of the 
disturbance and grows slowly, as was seen in the weak disturbance. The most 
prominent feature that is new to the high-amplitude disturbance is the development 
of the strong spanwise shear layers and the long, thin regions of high-speed fluid that 
straddle the central low-speed core of the disturbance as shown in figure 2. As with 
the necking observed in figure I ,  these streaks became more intense a t  later times. 
Although the wave packet seen in the linear calculations accompanying the transient 
structure is also present in the full simulations, by t U / P  = 99 it  no longer 
contributes significantly to the structure of the disturbance and is hardly visible 
since it fails below the level of the lowest contour. From that time, the waves are only 
a low-amplitude addition to the main part of the disturbance which has evolved from 
the transient portion of the disturbance. The overall growth of the disturbance was 
found by computing the evolution of the maximum streamwise perturbation velocity 
with time. It was found that urnax grow approximately linearly from zero a t  
t U / P  = 0 to a level of about 20% of U ,  a t  t U / P  = 100. At later times, u,,, 
increased sharply, reaching 80% of U ,  by t U / P  = 200. 

Based on the vertical and the spanwise structure of the streamwise component of 
velocity, we can see that the two regions of strong shear have developed in the flow 
- one in the vertical direction, centred at z = 0 and two regions of strong spanwise 
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FIGURE 3. Contours of vertical velocity in the (z, y)-plane at the centreline, z = 0. 
Contour spacing: O.O02U,. 

shear, au/az,  on either side of the centreline. The first is directly a linear effect, since 
it was observed in the linear calculations of Part 1 .  The second was qualitatively 
present in the linear model in a very weak form, but the strong spanwise shear layer 
that we observe is primarily a nonlinear effect that is unique to the stronger 
disturbance. Although the magnitude of the spanwise shear does become quite large 
as the long streaks of high- and low-speed fluid intensify, it never exceeds the 
magnitude of the shear in the y-direction. By calculating the shear strength in both 
the spanwise and vertical directions, we find that the maximum spanwise shear 
strength normalized by the mean shear, aU/ay, at the wall is still only 0.245 at 
tU/&* = 136. In contrast, the maximum vertical shear strength at  the centre of the 
inclined shear layer is actually greater than the mean shear at the wall. 

Both the strength of these perturbations, and their permanence as the disturbance 
evolves contribute to the formation of locally inflectional mean velocity profiles. The 
vertical shear at  the centreline creates an inflectional profile in y, while the spanwise 
shear creates an inflectional profile in z. This raises the possibility of the growth of 
a secondary instability, although for this flow, in which there are strong shears in 
both the y- and z-directions, it is as yet unclear with which shear the secondary 
instability will be primarily associated. This question will be addressed in the later 
discussion. 

3.2. Vertical velocity 

A contour plot illustrating the centreline structure of the vertical velocity field is 
shown in figure 3, and the distinction between the horizontal and vertical velocity 
fields that was seen in Part 1 is made clear once again when we compare the v-field 
with the u-field. The normal component here shows none of the structure of the 
streamwise component and the internal shear layer that the liftup has created. 
Whereas the u-perturbations are confined to the boundary layer (y/S* < 3), the 
normal velocity extends well into the free stream before decaying. This difference 
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makes sense when one recalls the results from Part 1 in which the vertical vorticity 
was shown to make the dominant contribution to the horizontal velocities. This 
contribution is non-zero only in the presence of a mean shear and thus the horizontal 
disturbance velocities will be confined to the boundary layer where U’ =k 0. In 
contrast to this, the vertical velocity component is governed (in the linear case) by 
the Orr-Sommerfeld equation whose solutions decay in the free stream as ePky, thus 
extending well beyond the edge of the boundary layer. Of course, there is a wave 
component to the horizontal velocities that extends into the free stream and behaves 
in a similar fashion to the v-component, but it is much weaker than the transient 
portion that is excited in the shear region and is an order of magnitude smaller than 
the shear-layer perturbations and thus is not seen in the contour plots at the current 
scaling. 

In the linear inviscid problem studied by Gustavsson (1978), the transient part of 
v was observed to decay like l / t  moving with the disturbance. In the viscous problem 
considered here, we would still expect the transient part of v to decay, although the 
decay rate will not necessarily be the same. This decay is qualitatively reproduced 
in figure 3, but only for the upstream side of the disturbance. In  that region, the 
negative v-perturbation, corresponding to an accelerated (and therefore stabilized) 
mean flow, does not develop any wave structure and is simply advected downstream, 
unchanged (and unstretched), slowly decaying in amplitude as time progresses. 
However, on the downstream side of the disturbance, the structure does not decay 
but, rather, grows in amplitude. Here we see more evidence of the growth of a 
secondary instability associated with the distorted mean profile. The waviness in the 
contour lines a t  t tJ/S* = 80 illustrates the initial stages of this wave and as time 
increases the instability grows and expands until by tU/S* = 117 it  fills the entire 
vertical structure of the disturbance. Gustavsson (1978) commented that because the 
liftup effect is only observed in the streamwise velocity and not in the vertical 
velocity, it should be much easier to see wave phenomena in the v-component 
because they will not be swamped by the dominant liftup effects. This is illustrated 
well here since the streamwise contour plots did not show any clear evidence of a 
secondary instability, and only a t  tU/r3* = 117 were we able to see any real changes 
from the results of the linear theory. I n  contrast to  this, the vertical component, 
because of its lower amplitude and lack of ‘contamination’ by the liftup effect, 
indicates the secondary wave growth at a much earlier time and with more clarity. 
(In fact, the wave growth was clearly seen in the v-component a t  the even earlier time 
of tU/S* = 62.) 

The spanwise structure of the v-component at y/6* = 1.05 (figure 4) also reflects 
the secondary wave growing along the centreline. The secondary wave first appears 
a t  t = 62, indicated by the splitting of the central contour from one island into two. 
Initially it appears to be almost two-dimensional, but as the wave packet develops, 
the region of maximum amplitude shifts from the centreline to two peaks on either 
side of the centreline. Although the mechanism behind this development is not clear, 
it is qualitatively similar to what was observed in the weak-disturbance experimental 
measurements in Part 1, in which the maximum positive streamwise perturbation 
shifted from the centreline to two off-centre peaks. Gaster & Grant (1975) also 
observed this splitting in the later stages of the growth of a linear wave packet in a 
boundary layer and commented that it was probably due to nonlinear effects. 

In  addition to the secondary instability, the contour plots of the v-component also 
reflect the streamwise streaks that were observed in the u-component. These streaks 
develop in two ways. The first is from the intensification of the negative lobes on 
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either side of the central core. These correspond exactly to the intensification of the 
positive side lobes in the u-velocity and emphasizes the association between the 
streamwise perturbation and the normal perturbations through the linear liftup 
effect. Secondly, the streamwise streaks develop further through the growth of the 
two positive peaks that have formed in the central core from the secondary 
instability. 

In  order to determine how these secondary oscillations correlate with the strong 
shear layers, we must determine the amplitude distribution of the wave packet in the 
flow field. This is a somewhat subtle problem since we need a method with which to 
separate the secondary oscillations from both the base flow (the undisturbed Blasius 
profile) and the primary disturbance (the shear layers created by the initial counter- 
rotating eddies). It turns out that  this is not at all difficult. By examining the power 
spectra of v and of w at fixed values of y ,  it  is immediately apparent that the 
streamwise wavenumbers that characterize the secondary oscillations are higher and 
quite distinct from the wavenumbers that represent the primary disturbance and the 
mean flow (this is shown in more detail in the following section which discusses the 
power spectra of v and by figure 7) .  Thus, by filtering out all of the energy contained 
in the lower wavenumbers, we can very effectively isolate the structure of the 
secondary oscillations. 

This was applied to the data field a t  t U l P  = 80, filtering out everything below 
ad* = 0.55, where a is the streamwise wavenumber, and taking the maximum peak- 
to-peak value of the resultant wavepacket in x as a characteristic value of the 
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FIGURE 5.  Amplitude distribution of secondary oscillations in v in the cross-stream plane at t = 80 
and t = 117, using the maximum value in x. Contour spacings are 0.0005U, and O.OOlU, 
respectively. 

oscillation amplitude at each y,z location. This resulted in a measure of the 
amplitude distribution of the oscillations in v and is shown in figure 5,  along with the 
amplitude distribution of v at tU/d* = 117 (filtered a t  ad* = 0.4). Two features are 
worth noting. First, for both times, the maximum amplitude is located on the 
centreline and at  a height of about y/d* = 1.5. By referring to the streamwise 
disturbance velocity contours a t  the same times (figure i b ,  c ) ,  we see that this 
location corresponds exactly to the region of maximum vertical shear. The 
oscillations are completely confined to the central portion of the disturbance, the 
region where we observe the vertical shear layer structure in u, while the region of 
strong spanwise shear (at z/d* 3.5) does not seem to leave any mark on the 
amplitude of the v-oscillations. This leaves little doubt that  the oscillations that we 
observe arc associated with the vertical shear, and are not affected by the spanwise 
shear layer. The second feature to note is the vertical structure of the oscillations. 
The waves extend well beyond the boundary-layer height and into the free stream, 
decaying slowly with y. This decay was found to be exponential, with a decay rate 
almost exactly equal to the dominant wavenumber of the disturbance (ad* = 0.85 at  
tU/d* = 80, and ad* = 0.5 a t  tU/d* = 117). This free-stream structure is consistent 
with the idea that the oscillations arise from an instability wave developing on the 
distorted mean profile and suggests that the amplitude distribution of v is closely 
related to the linear eigenfunction that results from the linear stability analysis 
based on the distorted mean profile. 

This was confirmed by calculating the Orr-Sommerfeld eigenfunction that 
corresponds to  this locally distorted mean flow. The eigenfunction was calculated as 
follows. The streamwise velocity component a t  x/d* = 33, z/d* = 0 was extracted 
from the numerically simulated velocity field a t  tU/d* = 62. This profile was filtered, 
yielding a smooth velocity profile which was representative of the distorted mean 
field at the centre of the inclined shear layer and a t  the same location where we 
observe waves to grow. The Orr-Sommerfeld equation was then solved numerically 
using this derived mean profile, and taking a = 1 for the wavenumber, since this is 
the wavenumber of the observed instability. This calculation should be regarded 
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FIGURE 6. The solid line depicts the Orr-Sommerfeld eigenfunction calculated using the mean 
profile extracted from the simulation data at z = 33, z = 0, t = 62. The symbols show the actual 
distribution of the secondary oscillations of v extracted from the simulated flow a t  the same 
location and time. 

with some caution. The derivation of the Orr-Sommerfeld equation is based on a 
steady, uniform and parallel mean flow, none of which applies to the present case! 
However, the distorted mean flow, generated by the primary disturbance, evolves 
quite slowly and is fairly uniform at x/S* = 33, z/S* = 0 (relative to the scale of the 
instability wave considered) and thus a quasi-steady , quasi-uniform approximation 
seems reasonable, at least as a first approximation. The resultant eigenfunction, 
along with the observed v’ distribution a t  the same x, z location is plotted in figure 
6. The position of the maximum and the exponential decay in the free stream are 
both well represented by the calculated linear eigenfunction. The numerically 
extracted data shows a double peak at the maximum, which indicates that the single- 
mode linear approximation is not completely valid, but nevertheless the agreement 
is quite good considering the simplicity of the model. 

3.2.1. Power spectra of v 

Both of the nonlinear effects that we have observed, namely the development of 
long streamwise streaks of fluid, and the growth of secondary instabilities on the 
distorted mean profile, can be clearly seen by examining the power spectra of the 
velocity field for the disturbance. The two-dimensional spatial power spectra for the 
v-field at y/S* = 1.05 are shown in figure 7. The horizontal axis depicts the 
streamwise wavenumber a (non-dimensionalized by a*), while the vertical axis 
depicts the spanwise wavenumber, 8, similarly non-dimensionalized. The spectrum 
a t  tU/S* has the oval shape corresponding to the initial conditions, but by tU/S* = 
80 we see that a peak has emerged at aS* = 0.2,@* = 1.3. This wave angle 
corresponds to the emergence of the two oblique strips of downward-moving fluid 
that have appeared on either side of the centreline in figure 4 ( b ) ,  and as they intensify 
a t  later times, the peak in the power spectrum also intensifies. As the structure 
grows, it is elongated (by the tilting and stretching of the mean shear) and so the 

20-2 
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FIGURE 7. Two-dimensional spatial power spectra of the 2, component of velocity at y/8* = 1.05. 
a represents the streamwise wavenumber, /3 represents the spanwise wavenumber. Contours are 
plotted on an arbitrary logarithmic scale. 

peak moves towards a lower value of ad*. By tU/d* = 117, a second oblique structure 
is beginning to emerge, again a t  ad* = 0.2 but a t  a higher spanwise wavenumber : pd* 
= 2.5. On examination of figure 4(c), it becomes clear that the original spanwise 
streak has subdivided into two smaller ‘strips’, each with a sharper spanwise 
gradient than the first, hence the higher value for pS*. The spectra seem to indicate 
that this process seems to be repeating itself in a cascade: each new peak in the 
spectrum forming a platform from which the next peak develops at a smaller 
spanwise scale. By reading from the power spectra a t  tU/S* = 136 (not shown here) 
we have found that the values of (ad*, pa*) at each peak are approximately : (0,0.7), 
(0.1,1.3), (0.2,2.0) etc., suggesting that each peak is a multiple of the first spanwise 
peak and that the nonlinearity serves to introduce higher harmonics as time 
progresses. This progression is just the generation of harmonics that is commonly 
seen in nonlinear stability theory (for example, Stuart 1960). By the later times, the 
distinct peaks in the spectrum were observed to be merging together and we would 
expect that, at some later point, the spectrum will eventually become continuous and 
the disturbance will have degenerated into a turbulent spot. 

The second nonlinear process that was observed in the velocity contours - the 
secondary wave growth - is also reflected in the power spectra of v. Starting a t  
tU/d* = 80 a peak appears at ad* = 0.85,@* = 0. This corresponds to the two- 
dimensional wave packet that was observed growing on the back of the distorted 
mean profile at z/S* = 0. We should note here that the primary disturbance and the 
secondary instability clearly occupy quite distinct wavenumber regimes and that the 
filtering process that was used in the previous section in order to obtain the 
instability amplitude distribution is therefore valid. 

As the disturbance progresses, the wavenumber about which the secondary 
instability is centred decreases, along with the rest of the disturbance spectrum, 
indicating that the wave stretches along with the structure. In addition to this, the 
peak of the wave packet moves off the pS* = 0 axis, corresponding to the previous 
observation in the velocity field that the maxima of the wave packet moved off the 
centreline. This behaviour is also consistent with the spectra obtained by Gaster & 
Grant (1975). A t  tU/S* = 117 a subsequent peak a t  ad* = 0.6 and pd* = 1.5 has 
appeared, and a t  tU/d* = 136, a third peak a t  aS* = 0.5,pd* = 2 was also observed 
to be emerging, indicating that the wave packet itself had begun to participate in 
nonlinear interactions. This evolution of the secondary instability, and the 
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appearance of new peaks a t  successively higher spanwise wavenumbers is identical 
to what we have already observed in conjunction with the nonlinear development of 
the  primary disturbance and suggests that the same nonlinear mechanism that 
generated the oblique strips from the primary disturbance might also be responsible 
for the nonlinear evolution of the secondary instability. 

3.3. Spanwise velocity 
Contour plots of the spanwise velocity component are shown in figure 8 which depicts 
the structure of w in the (x, 2)-plane a t  a height of y/6* = 1.05. At tU/d* = 43 we see 
four main lobes, which is essentially the structure of the initial perturbations. In 
addition we see the signs ofa  swept-back wave packet which is growing on the sides. 
As the disturbance propagates downstream, the structure remains essentially the 
same except that it elongates as it advances. One should remember that, in common 
with the streamwise velocity, linear theory predicts that the spanwise velocity is also 
dominated by the liftup effect, and thus the core of the w-structure is advected at the 
local mean velocity. As we have seen, this results in the stretching of the disturbance 
by the action of the background shear profile and this is what is observed here. The 
waves on the sides of the structure are the linearly amplified dispersive portion of the 
disturbance and, as such, travel a t  typical wave speeds that are somewhat slower 
than the local mean velocity at this height in the boundary layer. This difference in 
propagation speeds is confirmed in figure 8 as we see that the edges of the disturbance 
are lagging the core as the whole structure advances. 
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FIQURE 9. Amplitude distribution of secondary oscillations in w in the cross-stream plane at 
t = 80 and t = 117 using the maximum value in 2. Contour spacings are O.OOlU, and 0.005U, 
respectively. 

By t U / P  = 99, and a t  subsequent times, an additional feature has become 
apparent in the w-contours. This is the development of additional contour lines in the 
centre of the disturbance and on either side of the line of symmetry. These islands 
represent a wave that is growing in the w-component. We had already anticipated 
that the strong shear layers that were observed in the u-velocity would render the 
flow susceptible to secondary instabilities. These have already been observed in the 
v-component, which in that case were associated with the inflectional vertical profile 
along the centreline. Those oscillations in v showed no correlation with the spanwise 
shear in the u-velocity. However, from these contour plots, it appears that the 
oscillations in w are centred in the regions away from the centreline and close to the 
regions of high spanwise shear au/az. It is therefore possible that these oscillations 
are correlated with the spanwise structure of the distorted mean flow. 

In order to determine more precisely the spatial structure of the oscillations in w, 
the amplitude distribution of the secondary oscillations in w was computed using 
the same technique employed for the secondary instability in v. A t  each (y,z)- 
location, the w-signal was filtered using a high-pass filter set at the optimal 
streamwise wavenumber for each time in order to remove the primary spanwise 
perturbation while leaving the secondary oscillations untouched. For t U / P  = 80, 
this wavenumber was a&* = 0.54, and at tU/S* = 117,aP = 0.4. As before, the 
maximum perturbation of the filtered signal was taken as the amplitude of the 
oscillations for that y, z location. The results of this operation are shown in figure 9 
in which the amplitude distribution of the secondary spanwise oscillations are 
plotted for both tU/S* = 80 and tU/S* = 117. What is apparent is that the maximum 
in the distribution occurs on either side of the centreline a t  about y/6* = 1, z / S  = 3.5 
which corresponds to the maximum in the spanwise shear au/az. At first glance this 
would seem to indicate that the secondary oscillations in w are indeed correlated with 
the spanwise shear and not the vertical shear as was the case with the v-component. 
This indication would be in agreement with the results of Swearingen & Blackwelder 
(1987) who studied the secondary oscillations observed in Gortler vortices. Their 
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measurements (of the streamwise velocity component) indicated that the instability 
that grew on the Gortler vortices seemed to be associated more with the spanwise 
shear au/az  than with the normal shear aulay. Although the Gortler flow and the 
present case have important differences (the foremost being that the Gortler flow 
does not have a strong x-dependence), both are characterized by two distinct mean 
shears (normal and spanwise) and the oscillations that develop as a result of the 
distorted flow might be correlated with either one of these shear layers. 

However, we should proceed with caution, for there are several reasons to believe 
that, despite the distribution indicated in figure 9, the spanwise shear does not play 
a major role in the secondary instability process. The calculation presented here has 
enforced symmetry about the x-axis, and this requires that the w-field is always 
antisymmetric about that axis and must be zero at z/6*  = 0. Thus, any feature 
observed in the w-velocity will have its maximum away from the centreline. It is 
possible that, if the calculation were repeated without any spanwise symmetry 
constraint, an instability mode in w may arise at z/S* = 0 and alter the observed 
distribution. (This is planned for future calculations and experiments.) This 
constraint explains why figure 9 has the observed structure. However, it does not 
necessarily exclude any importance of the spanwise shear layer. 

One aspect of the w-waves that indicates that they are associated with the vertical 
shear is their wavelength. As we noted earlier, the spanwise shear layer strength is 
considerably smaller than the vertical shear layer strength. Thus, if the w-oscillations 
are associated with the spanwise shear we would expect that the characteristic scale 
of the w waves would be much longer than the scale of the v-oscillations which are 
associated with the vertical shear. This is not, however, the case and the wavelength 
of the w-oscillations is almost identical to that of the v-oscillations, indicating that 
they are both caused by the vertical shear layer. 

Another aspect of this argument concerns the structure of the oscillations far from 
the disturbance. In the case of the vertical component, the secondary oscillations 
were observed to decay exponentially in the free stream - a result consistent with 
ideas from stability theory. In the case of the w-oscillations, if they do indeed arise 
from a spanwise instability, we should see a corresponding behaviour, that is, that 
w decay exponentially, w cc e-kz, with k given by the dominant wavenumber of the 
spanwise oscillation (which we have already noted, is comparable with the dominant 
wavenumber of the oscillations in v). Upon examination of the amplitudes of the w- 
oscillations it is apparent that this is not the case and, as figure 9 indicates, the w- 
oscillations decay much faster, and are confined in both the spanwise and the vertical 
directions. This would indicate that the observed waves in w are not due to an 
instability associated with the spanwise shear, but rather are another manifestation 
of the instability due to the vertical shear layer, perhaps augmented by a cross-flow 
instability and forced to have the observed bi-modal structure by the symmetry 
constraints of the numerical procedure. The possibility of a cross-flow instability 
contributing to the w-oscillations is supported by the strong spanwise velocity that 
is observed on either side of the centreline. At these locations the effective mean 
profile for linear stability (which is given by U, = aU+ PW) will be strongly unstable 
owing to the spanwise velocity component (which is supplied by the primary 
disturbance field) and we should expect that there will be significant secondary 
oscillations in that region due to this mechanism. 

Of course, as the disturbance grows in both amplitude and structural complexity, 
the straightforward association between the oscillations and the shear layers 
becomes more difficult. We should point out that at  the later times the interactions 
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between the vertical and spanwise shear layers in the primary disturbance and the 
oscillations in v and w (which quickly attain quite large amplitudes) are undoubtably 
complex. This is emphasized by the appearance of kinks in the contour lines in the 
distribution of v-oscillations a t  t U / P  = 117 (figure 5 )  which indicate that the 
application of these simple arguments must be limited. 

We do not show the spectra of the w-component, but since we know from the 
velocity contours of w that the spanwise component does not change as dramatically 
as the u- and the v-components, we do not expect that the spectra of  w will show any 
new features. The secondary instability that we have just discussed was seen to 
appear in a very similar manner to that observed in the v-component. The waves first 
appear as a two-dimensional wave packet, centred about /IS* = 0. However, by 
t U / P  = 99 the primary peak is centred at  a&* = 0.65,/3* = 0 but a second peak 
appears a t  ah'* = 0.65, /#* = 1. It is interesting to note that whereas the wavepacket 
in the v-component moved off the flS* = 0 axis, the wave packet in w always remains 
on the axis. Since the w velocity contours did not show any signs of the streamwise 
streaky structure that we have seen in the u and v, the spectra do not show much else 
of interest. Apart from the appearance and growth of the secondary oscillations, and 
the appearance of harmonics a t  higher values of /3 (in essentially the same way as was 
observed in the v-spectra) the w-spectra only show a gradual growth of the 
disturbance and an increasing complexity. 

3.4. The structure of the pressure Jield 

One of the convenient features of data resulting from numerical simulations is the 
availability of the pressure field in addition to the velocity field. This is, of course, 
impossible to achieve in the laboratory where the only pressure data available are at  
the wall, and even then usually only at a limited number of locations. We might 
expect that the pressure will depend little on y, in accordance with the result from 
steady-state boundary-layer theory. This is confirmed in figure 10, in which the 
pressure a t  the centreline remains approximately constant through the boundary 
layer, only decaying in the free stream as y + 00. (Note that the vertical coordinate 
in figure 10 is stretched, and so the normal gradients are in fact somewhat higher 
than they appear. Nevertheless, the pressure only begins to change when y/6* > 2.) 
The decay of the pressure in the free stream is predicted by linear inviscid theory in 
which the pressure in the free stream is linearly related to &lay. Since v decays as 
ePky in the free stream, the pressure must decay accordingly. The reason for the 
jaggedness in the pressure contours is not clear, but it is thought that it lies in the 
numerical error accrued while calculating the pressure from the velocity field. The 
pressure does not actually appear directly in the equations that are numerically 
integrated, but is calculated afterwards by solving a Poisson equation. This may 
have some inaccuracies associated with it which cause the saw-tooth lines in the 
pressure contours. 

It is quite straightforward to show from the inviscid linear theory for the evolution 
of a three-dimensional disturbance that the Fourier component of pressure, 5, 
depends solely on the Fourier component of vertical velocity, 5, and the mean profile : 

where k2 = a2+p2 and u and f l  are the streamwise and spanwise wavenumbers 
respectively (for more details on the derivation of this equation, see Part 1). Clearly, 
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x /a* 
FIQURE 10. Contours of pressure in the (z, y)-plane at  z = 0. Contour spacing : 0.001 V,/p.  

the present results do not derive from a linear flow, and in general the nonlinear 
effects will include interactions with other velocity components. However, if one 
compares the pressure contours in figure 10 with the similar plot for the vertical 
velocity (figure 3), one sees that the two signals are strongly related, and that the 
pressure peaks coincide with the maxima in the streamwise gradient of the v- 
component. This is exactly the leading term in (4) and suggests that the dominant 
term in the pressure equation is the mean shear interaction, U'av/ax. This is in 
agreement with the results of Johansson, Her & Haritonidis (1987) who investigated 
the relationship between wall pressure and the velocity field in a fully turbulent 
boundary layer. They also found that the conditionally averaged wall pressure is 
closely related to the gradient of the conditionally averaged vertical velocity 
measured in the buffer region a t  the same z-location. 

The spanwise structure of the pressure (figure 11) also reflects the dependence on 
the streamwise gradient of v, although the structure is somewhat more complicated. 
For the early times, when the gradients in the flow are not very sharp, the pressure 
peaks do align themselves with the streamwise gradients in v. However, at later 
times, as the flow becomes more complex, this correspondence is not so clear. There 
does not appear to be any effect on the pressure from the sharp spanwise gradients 
that  are seen in the streamwise disturbance velocity field and we do not observe the 
strong oblique strips that both the u and the v exhibit (recall that this was also true 
for the w-component of velocity). Referring back to the equation for 9 given by linear 
theory (4), this result is also not unexpected, since the pressure depends only weakly 
on the spanwise gradients in v. 

Another remark may be made here concerning the oscillations in the w-component 
of velocity. We have seen that the secondary v-flow causes a secondary pressure 
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distribution, and that the two correlate quite well with each other. The largest 
spanwise pressure gradients are also seen to correlate with the spanwise edges of the 
vertical shear layer and it is likely that these spanwise pressure gradients contribute 
to the w oscillations that were observed in this region of the flow. 

4. Results for negative disturbances 
We shall briefly discuss some results derived from the computation of the initial- 

value problem for a 'negative ' disturbance. This initial disturbance has exactly the 
same structure and amplitude as the disturbance discussed thus far, but with 
opposite sign (i.e. taking the amplitude in the stream function to  be A = -0.2). This 
kind of comparison was briefly discussed in Part 1 in the context of weak 
disturbances and it was found that although the positive and negative disturbances 
had some differences due to a weak nonlinearity, the resultant wave packets (after 
the transient part had decayed) were identical but of opposite sign. I n  the present 
case, the nonlinearity is clearly not weak and we have seen that the disturbance 
grows dramatically owing to the nonlinear effects of the transient. Thus, we would 
expect that a t  this amplitude, the evolution of the two disturbances will differ in a 
more significant manner. Owing to limited computer resources, the results presented 
here only cover the time range from tU/S* = 0 to 100, and so the results at later times 
cannot be compared. However, from what results are available, we can still make 
some worthwhile comparisons. 
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The initial vertical structure of the streamwise perturbation velocity (figure 12) 
appears to be identical but opposite to the structure of the positive disturbance, and 
given that the initial liftup mechanism has been shown to be a linear one, this is not 
surprising. In an identical manner to the positive case, the linear mechanism of the 
liftup effect, in which the fluid particles move at  the local mean velocity, causes the 
disturbance to elongate and tilt over as the disturbance evolves. The main difference 
between the two disturbances is that the disturbance structure created here is not an 
internal shear layer, but rather a locally ‘fattened’ profile near the wall and a 
decelerated region in the upper part of the boundary layer. We know that, unlike the 
previous case, this is not inviscidly unstable, and already we can anticipate that the 
secondary instability that was observed in the positive disturbance will not be seen 
in this case (at least not in the same form). 

From these cuts through the boundary layer at  z/6* = 0, it appears that the 
disturbance does not grow at all. However, figure 13 indicates that the structure does 
intensify as it evolves, but this time the main growth occurs on either side of the 
centreline. Qualitatively, the spanwise structure of the negative disturbance does 
appear somewhat similar to its positive counterpart. We still observe the weak wave 
field resulting from the initial conditions a t  the edges of the disturbance and, more 
importantly, we see the development of the strong streamwise streaks of high- and 
low-speed fluid and the development of strong spanwise shear layers in the 
streamwise velocity field. The physical appearance of the disturbance looks very 
similar to the experimental results of Landahl, Breuer & Haritonidis (1987) who 
studied this type of disturbance in connection with the control of boundary-layer 
transition. The similarity in both structure and amplitude serves as a confirmation 
that the numerical results are accurate. 
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The appearance of the streaky structure and the spanwise shear layers suggests 
that the same nonlinear mechanism that was observed in the positive disturbance is 
in evidence here. This was confirmed by looking at  the spectra of v at  y/6* = 1.05 for 
the negative disturbance, which indicated the emergence of a new peak at  a&* = 
0.15, /3S* = 1.0 which is at  a similar location in wavenumber space to the peak that 
emerged in the positive disturbance. (The spectra for the negative disturbance are 
not shown here because they are so similar in character to the spectra for the positive 
disturbance presented in figure 7. The only significant differences between the 
spectra from the positive and negative disturbances are those discussed in the 
following paragraph. ) 

Although the central core of the disturbance does not form an inclined shear layer 
and therefore is not susceptible to a secondary instability, examination of the spectra 
of v from the negative disturbance did show some signs of secondary oscillations 
growing in the same manner as was observed for the positive disturbance. The peak 
representing the secondary oscillations was much weaker than the corresponding 
peak in the spectra from the positive disturbance, but indisputably present. Upon 
close examination of the vertical velocity field, the resolution of this paradox 
becomes clear. While the central part of the negative disturbance does not form an 
inclined shear layer, the side lobes on either side of the centreline do have the same 
form as the positive disturbance, and they form two inclined shear layers, one on 
either side of the central region. The amplitude of the side lobes is considerably 
smaller than the central core, and so the shear layer strength is smaller than what 
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we observed in the positive disturbance case, but nonetheless, two shear layers are 
formed and all of the subsequent evolution of the negative disturbance is in relation 
to these twin disturbances. The secondary oscillations in v are observed a t  the centres 
of each disturbance, the high- and low-speed streaks that lead to the strong spanwise 
shear layers are seen on one side of each shear layer, leading to the observed spanwise 
structure of the u-component. Even the slower overall growth of the negative 
disturbance (the negative disturbance maintains a maximum streamwise per- 
turbation velocity of only one half that of the positive disturbance from tU/S* = 0 
to  100) can be explained by the fact that the dynamically significant inclined shear 
layers are initially weaker in the case of the negative disturbance, since they derived 
from the side lobes of the initial perturbation. 

5. The effect of changes in the initial spanwise scale 
We have seen thus far in the development of the localized disturbance that the 

driving forces in the initial growth of the structure result from the transient liftup 
effect. As the linear theory indicates (see Part 1) this portion of the initial disturbance 
is inherently associated with the three-dimensional nature, and hence the spanwise 
scale of the initial disturbance. As the spanwise scale becomes greater, i.e. the initial 
disturbance becomes more two-dimensional, the liftup effect lessens and the 
transient modes contain only decaying terms (Gustavsson 1978). Conversely, we 
would expect that as the three-dimensional nature of the initial field increases, these 
effects will become more prominent. 

I n  order to investigate the effect of the initial spanwise scale, the flow simulation 
was repeated at the same Reynolds number and with the same counter-rotating 
eddies as the perturbation velocity field, but with different initial spanwise 
dimensions. This is easily accomplished by changing the parameter 1, in the 
disturbance stream function. For the comparison, the simulation was repeated using 
Zz = 3S* compared with a value of 68* used in the previously discussed results (the 
'base run '). Physically, this had the effect of halving the spanwise scale of the initial 
eddy structure. If the perturbations are plotted with a z-scale expanded by 2, the 
structure of the initial disturbance is identical. We must, however, be aware of what 
else changes when the initial spanwise scale is altered. Recalling that the initial 
vertical velocity is defined as 

we see that the magnitude of the initial vertical velocity field must increase as 1, 
decreases (in order to maintain a constant total mass flow, which is set by the stream- 
function amplitude A ) .  The total energy of the initial disturbance may be found by 
integrating over all space v 2  + w2 (u is initially zero) and i t  may be shown that for the 
chosen stream function, this results in an expression : 

where E = lu / l z .  The first term inside the parentheses comes from the effect of the 
initial scales on o, while the second term represents the effect on w. Clearly, many 
quantities besides energy may be looked a t  to see how they change as the geometric 
parameters of the initial conditions vary. For example, the total momentum of the 
initial perturbations, the maximum spanwise velocity, etc. 
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FIGURE 14. Amplitudes of three disturbances with different initial geometries. Solid line : base 
run ; dotted line : constant-w,,, case ; dot-dash line: constant-mass-flow case. 

In the present case, two additional simulations were performed to evaluate the 
effect of spanwise scale. Both of these used the same value of I ,  and 1, since it was 
desirable to change only one geometric scale. In the first comparison, 1, was decreased 
from 6 to 3 while the amplitude was kept constant at A = 0.2. This meant that the 
mass of fluid moved remained constant, but the initial vertical velocity increased by 
100%. The total energy of the initial field actually decreased by 42% (owing to the 
decreased energy in the w-velocities). This run is referred to as the 'constant-mass- 
flow' run. In the second comparison, both 1, and A were decreased by 50%. This 
reduced the mass flow by 50 YO and the total perturbation energy by 86 %. However, 
the amplitude of the initial vertical velocity, which is the primary force for the liftup 
effect, remained constant. We shall refer to this run as the 'constant-v,,,' run. 

I n  both of the comparison cases examined, the basic structure of the disturbance 
was the same as we have already seen in the base run discussed previously. The 
formation of the shear layer, the secondary waves and the nonlinear formation of the 
streamwise streaks were all observed in the comparison cases and, when plotted with 
an expanded z-scale, their qualitative appearance is identical to  the base run which 
we have already discussed. For this reason, we have not presented contour plots of 
the velocity field for the comparison runs, but rather we shall concentrate on how the 
disturbances differ, specifically comparing the overall growth rate of the disturbances 
and the scaling of the nonlinear effects and secondary instabilities. 

5.1. Overall growth of the disturbance 

A comparison of the overall growth rates of the disturbances is shown in figure 14 
which shows the maximum u / U ,  perturbation as a function of time. The base run 
is shown by the solid line while the comparison runs with reduced initial spanwise 
scale are shown by the two dotted lines. The first (dot-dashed) shows the constant- 
mass-flow run, in which the initial vertical velocity was increased by 100 YO over the 
base run grows a t  an extremely rapid rate until t U / P  = 80, when its perturbations 
are about twice as large as those of the base run. After t U / P  = 80, it grows at an even 
faster rate and the velocity contour plots indicate an extremely complex and 
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FIGURE 15. Comparison of power spectra of w for calculations with different initial geometries. 
The contour levels are logarithmic and scaled by the maximum initial vertical velocity. 

intricate structure. Although the disturbance’s energy was almost half the energy of 
the base run, the large initial vertical velocity, and the reduced spanwise scale 
combine to create a disturbance which grows very rapidly. By comparison, the 
constant-v ca.lculation (shown by a dotted line) grows a t  approximately the same 
rate as the base run, despite the fact that its initial energy i s  85 % lower. The fact that 
the constant-mass-flow growth rate is initially twice the growth rate of the base run, 
while the constant-v case grows at the same rate suggests that the initial growth rate 
of the disturbance depends linearly on the amplitude of the vertical velocity of the 
initial perturbation. This is in agreement with the observed dominance of the liftup 
mechanism in the disturbance’s initial growth which is driven by the vertical 
movement of fluid particles. Changes in the spanwise dimension and the initial 
energy of the disturbance are only relevant in so much as they change the initial 
vertical displacement, which appears to be the dominant factor in the disturbance’s 
initial growth rate. 

5.2. The scaling of the nonlinear eYffects and secondary instabilities 
Figure 15 shows the two-dimensional power spectra of the vertical component of 
velocity for the base run and both the comparison runs. The vertical scale is the 
normalized spanwise wavenumber : / 3 ~ * l z o / l z ,  where I,, is the spanwise dimension of 
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the disturbance used in the base run. This normalization allows us to see more clearly 
the scaling of the disturbance with the initial spanwise dimension. The horizontal 
scale is the normal streamwise wavenumber. The contour levels (which are arbitrary 
logarithmic levels) are also normalized so that at  tU/6* = 0 the three initial spectra 
are identical. At tU/6* = 42, the three still appear to be more or less the same. 
However, the constant-mass-flow case already shows the signs of the secondary 
instability appearing as a two-dimensional wave at  a&* = 0.6. By tU/6* = 80, both 
nonlinear effects that were observed in the base run are seen in all three flows. Several 
comments should be made here. The secondary instability, which is centred along the 
PS* = 0 axis, appears at  the same value of a6* for all three geometries. This indicates 
that the spanwise scale does not affect the wavelength of this instability. This is not 
really surprising since the secondary instability is associated with the shear layer in 
the normal direction, which would not be affected by the initial spanwise scale. We 
would expect that this would be dependent on the streamwise scale of the initial 
disturbance, but this has not yet been investigated. However, the second peak that 
develops as a result of nonlinear interactions, at  a&* = 0.2,/?6*1, = 7 ,  is at  
approximately the same location for all three initial configurations, suggesting that 
this nonlinear interaction is inherently tied to the initial spanwise scale of the 
disturbance. This also makes sense when one recalls from $3.2.1 that this peak may 
be identified with the streamwise streaks of high- and low-speed fluid that evolve in 
the flow and that the spacing of these streak scales with I , .  

Although they are not shown here, the two-dimensional power spectra show 
similar results for the w-component of velocity, with some minor differences. The w- 
waves appear at  the same values of u6* in all three simulations, indicating that their 
scale is not affected by the spanwise dimension of the initial disturbance. This is 
significant because the changes in the initial spanwise scale affect the strength of the 
spanwise shear layer. That the scale of the w-oscillations is not altered by the changes 
in 1, reinforces the view that the oscillations observed in w are due to the instability 
of the vertical shear layer and not of the spanwise shear layer. As was observed with 
the v-component, the peaks in the power spectra associated with the direct nonlinear 
interactions (i.e. the harmonics appearing at  higher values of /?a*) do scale linearly 
with 1,. 

6. Conclusions 
The evolution of a moderate-amplitude localized disturbance shows many of the 

qualitative features that have been observed in linear and low-amplitude 
disturbances. The liftup effect, which is solely a feature of the three-dimensional 
nature of the initial perturbations, quickly dominates the horizontal perturbation 
velocities, creating a shear-layer structure which stretches and intensifies as the 
disturbance progresses. It must be emphasized that this initial behaviour is a purely 
linear phenomenon despite the moderately high amplitude of the initial disturbance. 
This is supported by observing how well the initial growth rate of the disturbance 
scales with the strength of the liftup term when the geometry of the initial 
disturbance is changed. The dominance of the transient portion of the disturbance 
due to the liftup effect emphasizes the importance of the three-dimensional nature of 
the disturbance. The linear equations indicate that even a modest spanwise structure 
can, in the presence of a strong mean shear, produce large-amplitude horizontal 
perturbations leading to secondary instabilities and nonlinear intensification of the 
disturbance. 
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Despite the initial linear character of the disturbance, nonlinear effects are quick 
to establish themselves and we see both the distortion of the ‘mean’ profile and the 
growth of secondary instabilities as the disturbance evolves. The nonlinear distortion 
takes the form of strong streaks of high- and low-speed fluid that intensify as the 
disturbance evolves. In  the power spectra of the velocity, these nonlinear effects 
appear as harmonics of the original disturbance appearing as a sequence of peaks, 
first at one half of the original scale, then one third, and so on until the flow becomes 
too complicated to discern individual peaks in the spectra. Although there are two 
shear layers in the distorted flow field, the vertical shear and the spanwise shear, it  
is the vertical shear layer that dominates the secondary instability process. It is 
stronger both in magnitude, and also in absolute velocity difference, both of which 
result in larger growth rates of an instability wave. The secondary instability is most 
clearly seen in the v-component, but we have also isolated it in the w-component. 
However, for the latter case, the symmetry constraints of the particular calculation, 
along with the effects of cross-flow instability mechanisms, cause the spatial 
distribution of the oscillations to be on either side of the centreline. The detection of 
the secondary instability is in contrast to recent numerical results of Henningson, 
Johansson & Lundbladh (1989) who did observe nonlinear effects due to wave-wave 
interactions, but not due to secondary instabilities. Their results were for plane 
Poiseuille flow and a t  a different Reynolds number. However, this discrepancy still 
needs to be resolved. 

The central importance of the inclined shear layer in the growth of the disturbance 
is emphasized by the comparisons between the positive and the negative 
disturbances. In both cases, the nonlinear growth and the secondary instabilities are 
associated with the shear-layer structures, and in the case of the negative 
disturbance, it is the side lobes of the initial perturbation that provide these shear 
layers which subsequently act as ‘nuclei’ for the rapid nonlinear growth of the 
overall perturbation. 

There is also a clear association between the structures observed in this study and 
the three-dimensional lambda vortices that have been observed in previous transition 
studies (for example, Klebanoff, Tidstrom & Sargent 1962). The shear layer and the 
secondary oscillations are both well known in the context of the three-dimensional 
development of boundary-layer transition but have always been viewed as a 
consequence of the breakdown of two-dimensional Tollmien-Schlichting waves. 
What has been shown here is that the T-S waves are not required, but that these 
localized structures are the natural consequence of any three-dimensional dis- 
turbance in a shear flow. Clearly, these ideas also have considerable relevance to 
Morkovin’s (1969) work regarding the nonlinear ‘bypass ’ mechanism by which a 
laminar flow can undergo transition to turbulence directly, bypassing the T-S wave- 
growth stage altogether. 

The elongated low- and high-speed regions that develop as the disturbance 
progresses are also reminiscent of the high- and low-speed streaks that are observed 
in fully turbulent wall flows. This association is not just by chance. The work of 
Johansson, Alfredsson & Kim (1987) on the dynamics of the wall region of a 
turbulent flow suggests that the structures responsible for the majority of turbulence 
production are inclined shear layers whose structure is similar in many aspects to the 
shear-layer structures that we have discussed in this paper. In recent work, Landahl 
(1990) has shown that a theoretical model based on the interaction between the 
three-dimensional liftup of fluid elements and the background shear can explain the 
formation of the streaky structure that is commonly observed in wall-bounded 
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turbulent flows. These results reinforce the idea that transitional flows and turbulent 
flows have much in common and that the underlying dynamics may be the same. 
This has been discussed by Blackwelder (1983) and also, more recently by Breuer, 
Landahl & Spalart (1987), and by Breuer (1988). 
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